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We study the space-time correlation and response functions in nonequilibrium growth processes described
by linear stochastic Langevin equations. Exploiting exclusively the existence of space- and time-dependent
symmetries of the noiseless part of these equations, we derive expressions for the universal scaling functions
of two-time quantities which are found to agree with the exact expressions obtained from the stochastic
equations of motion. The usefulness of the space-time functions is illustrated through the investigation of two
atomistic growth models, the Family model and the restricted Family model, which are shown to belong to a
unique universality class in 1+1 and 2+1 space dimensions. This corrects earlier studies which claimed that in
2+1 dimensions the two models belong to different universality classes.
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I. INTRODUCTION

Fluctuations are omnipresent when analyzing surfaces and
interfaces. These fluctuations can be equilibrium fluctuations,
as encountered, for example, when looking at steps on sur-
faces, or they can be of nonequilibrium origin as is the case
in various growth processes. Well-known examples of non-
equilibrium surface fluctuations are found in kinetic rough-
ening or nonequilibrium growth processes �1–3� such as, for
example, in thin film growth due to vapor deposition. Inter-
estingly, both equilibrium and nonequilibrium interface and
surface fluctuations can be described on a mesoscopic level
through rather simple Langevin equations �4�. In this ap-
proach the fast degrees of freedom are modeled by a noise
term, thus yielding stochastic equations of motion for the
slow degrees of freedom. In many instances the physics of
dynamical processes is to a large extend captured by linear-
ized Langevin equations �5� where one distinguishes whether
the dynamics is purely diffusive or whether mass conserva-
tion has to be implemented.

For purely diffusive dynamics �called model A dynamics
in critical dynamics �6,7�� the linear Langevin equation can
be written in the following way:

�h�x,t�
�t

= �2�
2h�x,t� + � + ��x,t� , �1�

where h�x , t� is the value of the macroscopic field h at site x
at time t. In the physical context of fluctuating interfaces and
growth processes in d+1 spatial dimensions h is the height
field whereas x is the lateral position in the underlying
d-dimensional substrate lattice. In addition, �2�0 is the dif-
fusion constant whereas � is the mean growth velocity
�which may of course be zero�. Finally, the random variable
� models the noise due to the fast degrees of freedom. De-
pending on the physical problem at hand, either Gaussian
white noise or spatially and/or temporally correlated noise is
usually considered �8�.

In the context of kinetic roughening and nonequilibrium
growth processes Eq. �1� is called the Edwards-Wilkinson

�EW� equation �9�. This equation has been used for the de-
scription of many dynamical processes, such as, for example,
equilibrium step fluctuations with random attachment/
detachment events at the step edge �10–12�. This equation
also describes the dynamics of a growing surface with a nor-
mal incidence of the incoming particles. An obliquely inci-
dent particle beam, however, generates anisotropies which
can only be described by a more complex nonlinear Lange-
vin equation �13�.

In growth processes with mass conservation the following
linear Langevin equation �with �4�0�

�h�x,t�
�t

= − �4�
4h�x,t� + � + ��x,t� �2�

has been proposed �14,15�. This equation is sometimes called
the noisy Mullins-Herring �MH� equation. The noise term
again reflects the physics of the investigated system. In the
case of equilibrium fluctuations conserved noise must be
considered, leading to the so-called model B dynamics �6,7�.
On the other hand, when studying out-of-equilibrium pro-
cesses one can again focus on Gaussian white noise or on
noise which is correlated in space and/or time �16�.

The Langevin equation �2� is used, for example, to de-
scribe film growth via molecular beam epitaxy �15,17,18�,
equilibrium fluctuations limited by step edge diffusion
�12,19� or even tumor growth �20,21�.

An important notion in nonequilibrium growth processes
is that of dynamical scaling. Dynamical scaling is nicely il-
lustrated through the behavior of the mean-square width of
the surface or interface which for a substrate of linear size L
scales as �22�

W2�L,t� = L2�F�t/Lz� , �3�

where � is the roughness exponent and z is the dynamical
exponent. For EW we have z=2 whereas for MH z=4. The
value of � depends on whether correlated or uncorrelated
noise is considered.
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Langevin equations have the drawback that they do not
really mirror the atomistic processes underlying the fluctua-
tions of the interfaces and surfaces. In order to capture the
physics on the microscopic level one commonly designs
simple atomistic models �characterized by some specific
deposition and/or diffusion rules� which are then often stud-
ied numerically. However, it is not always clear what the
corresponding Langevin equation is. Usually, numerical
simulations are used in order to extract the exponents � and z
�see Eq. �3�� which generally permit to relate the microscopic
model to one of the Langevin equations �universality
classes�. These exponents, however, encode only partly the
information given by a scaling behavior, as the scaling func-
tions, like F�y� in Eq. �3�, are themselves different for dif-
ferent universality classes.

In this paper we focus on two-point quantities as, for ex-
ample, the space-time response and the space-time correla-
tion functions which also display a dynamical scaling behav-
ior. On a more fundamental level we show, using arguments
first given in �23�, that in systems described by Eqs. �1� and
�2� the scaling functions of these two-point quantities can be
derived by exclusively exploiting the symmetry properties of
the underlying noiseless, i.e., deterministic, equations. This
approach, which is based on generalized, space- and time-
dependent, symmetries of the dynamical system �24,25�, has
in the past already been applied successfully in the special
case z=2 to systems undergoing phase ordering �23,26–28�
and to nonequilibrium phase transitions �29�. Here we show
that local space-time symmetries also permit to fix �up to
some numerical factors� the scaling functions of space-time
response and correlation functions in cases where z=4. On a
more practical level we demonstrate the usefulness of the
scaling functions of these two-point quantities �which de-
pend on two different space-time points �x , t� and �y ,s�� in
the characterization of the universality classes of nonequilib-
rium growth processes. Whereas in the study of critical sys-
tems scaling functions, which are universal and characterize
the different universality classes, are routinely investigated
�and this both at equilibrium �30� and far from equilibrium
�31,32��, in nonequilibrium growth processes the focus usu-
ally lies on simple quantities like, for example, the exponents
� and z. There are some notable exceptions where scaling
functions have been discussed �see, for example, �8,16��, but
these studies were in general restricted to one-time quanti-
ties. However, also in nonequilibrium growth processes scal-
ing functions of two-point functions are universal and should
therefore be very valuable in the determination of the univer-
sality class of a given microscopic model or experimental
system. We illustrate this by computing through Monte Carlo
simulations the two-point space-time correlation function for
two microscopic models which have been proposed to be-
long to the same universality class as the Edwards-Wilkinson
equation �1� with Gaussian white noise �33–37�.

The paper is organized in the following way. In Sec. II we
discuss the EW and the MH equations in more detail and
introduce the two-point functions. Section III is devoted to
the computation of the exact expressions of the space-time
correlation and response functions by Fourier transformation.
These exact results show inter alia that the response of the
system to the noise does not depend explicitly on the specific

choice of the noise itself. In Sec. IV we discuss the space-
time symmetries of the noiseless equations, whereas in Sec.
V we show how these symmetries can be used for the deri-
vation of the scaling functions of two-point functions. In Sec.
VI we numerically study two microscopic growth models
which have been proposed to belong to the Edwards-
Wilkinson universality class. There has been a recent debate
on the universality class of these models which we resolve
by studying the scaling function of the space-time correlation
function. Finally, in Sec. VII we give our conclusions. Some
technical points are deferred to the Appendices.

II. NOISE MODELIZATION AND SPACE-TIME
QUANTITIES

Our main interest in this paper is the investigation of
space-time quantities in systems described by the quite gen-
eral linear stochastic equations �1� and �2�. Setting the mean
growth velocity � to zero �which can always be achieved by
transforming into the comoving frame� both cases can be
captured by the single equation

�h�x,t�
�t

= − �2l�− �2�lh�x,t� + ��x,t� �4�

with l=1 �EW� or l=2 �MH�. As is well known, these equa-
tions of motion can be derived from a free field theory �7�.

Depending on the physical context, different types of
noise may be considered. For the EW case we shall discuss
both Gaussian white noise �EW1�

���x,t�� = 0, ���x,t���y,s�� = 2D�d�x − y���t − s� �5�

and spatially correlated noise �EW2�

���x,t�� = 0, ���x,t���y,s�� = 2D�x − y�2�−d��t − s� �6�

with 0���d /2. In the past, these two types of noise have
been used in the modeling of nonequilibrium growth pro-
cesses �4,5�. If, however, one wishes to model thermal equi-
librium interface fluctuations, such as, for example, step fluc-
tuations rate-limited by evaporation-condensation, one has to
consider white noise with the Einstein relation D=�2kBT
where T is the temperature and kB the Boltzmann constant.
For the MH case we also consider the noises �5� and �6�,
called MH1 and MH2 in the following. In this case, however,
white noise can only be used in nonequilibrium situations as
it breaks the conservation of mass encoded in the Langevin
equation �2�. We shall not consider here the noisy Mullins-
Herring equation with conserved noise which assures the re-
laxation toward equilibrium of a system with conserved dy-
namics, as this is covered by a forthcoming publication �38�.

Two-time quantities have been shown in many circum-
stances to yield useful insights into the dynamical behavior
of systems far from equilibrium �32�. Of special interest are
space- and time-dependent functions such as, for example,
the space-time response R�x ,y , t ,s� or the height-height
space-time correlation

C�x,y,t,s� = �h�x,t�h�y,s�� , �7�

where the brackets indicate an average over the realization of
the noise. The space-time response, defined by
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R�x,y,t,s� = ���h�x,t��
�j�y,s�

�
j=0

, �8�

measures the response of the interface at time t and position
x to a small perturbation j�y ,s� at an earlier time s and at a
different position y �39�. For reasons of causality we have
t�s. At the level of the Langevin equation the perturbation
enters through the addition of j to the right-hand side. As-
suming spatial translation invariance in the directions paral-
lel to the interface, we have

C�x,y,t,s� = C�x − y,t,s�, R�x,y,t,s� = R�x − y,t,s� .

�9�

The autocorrelation and autoresponse functions are then de-
fined by

C�t,s� ª C�0,t,s�, R�t,s� ª R�0,t,s� . �10�

It is well known that the systems discussed here present a
simple dynamical scaling bevahior �see Eq. �3��. For ex-
ample, for the autoresponse and the autocorrelation functions
we have

R�t,s� 	 s−a−1fR�t/s�, C�t,s� 	 s−bfC�t/s� , �11�

which defines the nonequilibrium exponents a and b. This
terminology is well known from magnetic systems. Combin-
ing Eqs. �3�, �7�, and �11�, one ends up with the scaling
relation b=−2� /z, which relates b to the known exponents �
and z. In addition the scaling functions fR and fC define two
additional exponents �R and �C by their asymptotic behavior

fR�y� 	
y→	

y−�R/z, fC�y� 	
y→	

y−�C/z, �12�

where z is again the dynamical exponent introduced in the
Introduction. Similarly, one obtains for the space-time quan-
tities the following scaling forms:

R�x − y,t,s� 	 s−a−1FR��x − y�z/s,t/s� ,

C�x − y,t,s� 	 s−bFC��x − y�z/s,t/s� . �13�

III. RESPONSE AND CORRELATION FUNCTIONS:
EXACT RESULTS

This section is devoted to the computation of space-time
quantities by directly solving the Langevin equations �1� and
�2� in the physically relevant cases d=1 and d=2. These
exact results will be used in the following in two different
ways. In Sec. V we use these expressions in order to check
whether our approach, which exploits exclusively the gener-
alized space-time symmetries of the deterministic part of the
equation of motion, yields the correct results. In addition, in
Sec. VI we compare these expressions with the numerically
determined scaling functions obtained for two different ato-
mistic models in order to decide on the universality class of
these models.

A. z=2: The Edwards-Wilkinson case

In order to compute the response of the surface/interface
to a small perturbation we add the term j�x , t� to the right-

hand side of the Langevin equation and then go to reciprocal
space. In the EW case the solution of the resulting equation
is �with d=1, 2�

ĥ�k,t� = e−�2k2t

0

t

dt�e�2k2t���̂�k,t�� + ĵ�k,t��� , �14�

where we denote by ĥ�k , t�, �̂�k , t� resp. ĵ�k , t� the Fourier
transform of h�x , t�, ��x , t� resp. j�x , t�. We prepare the sys-
tem at time t=0 in an out-of-equilibrium state. For simplicity
we assume flat initial conditions, i.e., h�x ,0�=0, but our re-
sults are the same for any initial state with �h�x ,0��=0 �40�.
This preparation enables us to study the approach to equilib-
rium for the EW1 case with a valid Einstein relation. For the
corresponding study of equilibrium dynamical properties �as
encountered in the recent experiments on step fluctuations
�10–12�� we have to prepare the system at t=−	 and replace
in �14� the lower integration boundary 0 by −	. We shall in
the following concentrate on the out-of-equilibrium situation.

Taking the functional derivative of �14� and transforming
back to real space yields the result

R�x − y,t,s� = r̂0
 dk

�2
�deik·�x−y�e−�2k2�t−s� �15�

=r0�t − s�−d/2 exp�−
�x − y�2

4�2�t − s�� �16�

with r0= 1
�2
�2�d and t�s. The exponents a and �R as well as

the scaling function fR can readily be obtained from the ex-
pression of the autoresponse function �see Eqs. �11� and
�12��

R�t,s� = r0�t − s�−d/2, �17�

yielding a= d
2 −1, �R=d, and fR�y�	�y−1�d/2−1.

The expression for the space-time response is completely
independent from the choice of the noise term as long as
��̂�k , t��=0. This also holds for the MH case, as discussed in
the next subsection. In Sec. V we shall discuss an alternative
way of looking at this fact.

A similar straightforward calculation yields for the space-
time correlation the expression

C�x − y,t,s� = 

0

t

dt�

0

s

dt�
 dk

�2
�deik·�x−y�e−�2k2�t+s−t�−t��

���̂�k,t���̂�− k,t��� , �18�

where we have exploited the spatial translation invariance of
the noise correlator. For Gaussian white noise we then obtain
for the space-time correlation

C�x − y,t,s� = c0�x − y�2−d���d

2
− 1,

�x − y�2

4�2�t + s��
− ��d

2
− 1,

�x − y�2

4�2�t − s��� �19�

with c0= D

2d+3
3d/2�2
. The autocorrelation function for d�2 �41�
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is obtained by using the known series expansion of the in-
complete Gamma-functions �:

C�t,s� =
2c0�4�2�1−d/2

2 − d
s1−d/2�� t

s
+ 1�1−d/2

− � t

s
− 1�1−d/2�

�20�

from which we find b= d
2 −1, �C=d, and fC�y�	�y+1�1−d/2

− �y−1�1−d/2. For the special case d=2 one has to take the
logarithmic behavior of the Gamma-functions into account
which yields

C�t,s� = c0 ln
t + s

t − s
. �21�

For spatially correlated noise the space-time correlator
can only be written as a series expansion:

C�x − y,t,s� = �
n=0

	

�− 1�nan
�d�����x − y�2n��t + s�−�2n−2�+d−2�/2

− �t − s�−�2n−2�+d−2�/2� �22�

with

an
�d���� = bn

�d� 22�D������n − � + d/2�
�2� − 2n − d + 2�
2−3d/2��d/2 − ���2

n−�+d/2

and bn
�1�= 1

�2n�! , bn
�2�= 1

��2n�!!�2 , whereas for the autocorrelator

one gets

C�t,s� = a0
�d����s1−d/2+��� t

s
+ 1�1−d/2+�

− � t

s
− 1�1−d/2+�� ,

�23�

yielding b= d
2 −1−�, �C=d−2�, and fC�y�	�y+1�1−d/2+�

− �y−1�1−d/2+�.
Looking at the expressions �19� and �22�, we see that in

both cases the space-time correlation has the following scal-
ing form:

C�x − y,t,s� = �x − y�F� �x − y�2

t + s
,
�x − y�2

t − s
� �24�

with =2−d resp. 2−d+2� for EW1 resp. EW2. The scaling
function F is then a function of the two scaling variables
�x−y�2

t+s and
�x−y�2

t−s . In the nonequilibrium situation we discuss
here the space-time correlation function is therefore not time
translation invariant. For equilibrium systems which are pre-
pared at t=−	 time translation invariance is of course recov-
ered. It is worth noting that the scaling form �24� corrects the

scaling forms given in �3� where only a dependence on
�x−y�2

t−s
was predicted far from equilibrium.

B. z=4: The Mullins-Herring case

For the Mullins-Herring case we proceed along the same
line as for the Edwards-Wilkinson case. We here only give
the results for one-dimensional interfaces and refer the reader
to the Appendix A for the two-dimensional case. The solu-

tion of the Langevin equation in Fourier space reads in the
MH case

ĥ�k,t� = e�4k4t

0

t

dt�e−�k4t���̂�k,t�� + ĵ�k,t��� �25�

which after some algebra yields for one-dimensional inter-
faces the expression

R�x − y,t,s� =
1


�4
1/4 ��4�t − s��−1/4���5

4
�

�0F2�1

2
,
3

4
;

�x − y�4

256�4�t − s�� − 2��3

4
�

�� �x − y�4

256��4�t − s���
1/2

0F2�5

4
,
3

2
;

�x − y�4

256�4�t − s���
�26�

for the space-time response. Here the 0F2 functions are gen-
eralized hypergeometric functions. It is worth noting that ex-
ponentially growing contributions to the functions 0F2 just
cancel each other, yielding a response function which de-
creases for �x−y�4 / �t−s�→	, as it should.

The autoresponse function is straightforwardly found
�with t�s�:

R�t,s� =

��5

4
�


�4
1/4 �t − s�−1/4 �27�

which gives us the quantities a=− 3
4 , �R=1, and fR�y�	�y

−1�−1/4. One straightforwardly verifies that in any space di-
mension d one has the relations a= d

4 −1, �R=d, and fR�y�
	�y−1�−d/4.

As for the EW case we remark that the exact expressions
�26� and �27� are independent of the noise: we obtain the
same results for Gaussian white noise and for spatially cor-
related noise. Let us add that we have here only considered
perturbations which are not mass conserving. Whereas this is
physically sound for the cases we have in mind here, one
usually considers mass conserving perturbations in the con-
text of critical dynamics �7,38�.

Turning to the correlation function, we proceed as for the
EW case and obtain

C�x − y,t,s� = 

0

t

dt�

0

s

dt�
 dk

�2
�deik·�x−y�e−�4k4�t+s−t�−t��

���̂�k,t���̂�− k,t��� . �28�

For Gaussian white noise this then yields in 1+1 dimensions
the expressions

C�x − y,t,s� =
D

�2
�2 �
n=0

	 �− 1�n�x − y�2n

�2n�!�4
�2n+1�/4�3 − 2n�

��2n + 1

4
�

���t + s��3−2n�/4 − �t − s��3−2n�/4� �29�

and

RÖTHLEIN, BAUMANN, AND PLEIMLING PHYSICAL REVIEW E 74, 061604 �2006�

061604-4



C�t,s� =
D��5/4�
3
2�4

1/4 ��t + s�3/4 − �t − s�3/4� �30�

for the space-time correlation and the autocorrelation func-
tions. Similarly, for spatial correlated noise we have

C�x − y,t,s� = �
n=0

	

�− 1�nãn
�1�����x − y�2n��t + s�−�2n−2�+d−4�/4

− �t − s�−�2n−2�+d−4�/4� �31�

with

ãn
�1���� =

22�D�������1 + 2n − 2��/4�
�2n�!�2� − 2n + 3�
1/2�„�1 − 2��/2…�4

�1+2n−2��/4 ,

the autocorrelation being given by the term with n=0.

IV. SPACE-TIME SYMMETRIES OF THE NOISELESS
EQUATIONS

We have seen in the previous section that both
models under consideration show dynamical �critical�
scaling behavior. For critical systems it is well know
�7,25� that the multipoint correlators G�x1 , t1 , . . . ,xn , tn�
ª �h1�x1 , t1� , . . . ,hn�xn , tn�� satisfy a covariance behavior of
the kind

G�bx1,bzt1, . . . ,bxn,bztn� = bx1+. . .+xnG�x1,t1, . . . ,xn,tn�

with a constant rescaling factor b and with some numbers xi.
It has been proposed by Henkel �25� to extend this dynami-
cal scaling with b constant to rescaling factors which are
space and time dependent, i.e., b→b�x , t�. For the special
case z=2 this can be connected to so-called Schrödinger in-
variance �42,43�. In �24,25� the concept of Schrödinger in-
variance has been extended to the case of an arbitrary value
of z, but a concrete comparison of the space-time quantities
predicted by this theory with specific, exactly solvable mod-
els with z�2 is still lacking. Here we wish to apply this
theory—which is called theory of local scale invariance
�LSI�—not only to the case z=2 �i.e., the EW case�, but also
to the MH case with z=4.

LSI proposes to derive expressions for the scaling func-
tions of two-time quantities by looking at the space-time
symmetries of the noiseless equations of motion. In our case
the deterministic equations for z=2 resp. z=4 are obtained
by dropping the noise term on the right-hand side of Eq. �1�
resp. �2�. The case z=2 then yields the free diffusion equa-
tion or, equivalently, when going to complex times, the free
Schrödinger equation. The maximal kinematic group of
space-time symmetries which leave the free Schrödinger
equation invariant is the so-called Schrödinger group
�42–45�, the elements of which transform space and time in
the following way:

x → x� =
Rx + vt + a

�t + �
, t → t� =

t + �

�t + �
, � − �� = 1,

�32�

where R is a rotation matrix, whereas v, a and , �, �, � are
real parameters. We write for this also �x� , t��=g�x , t� and

denote the inverse transformation by g−1�x� , t��. Under the
action of these group elements solutions � of the
Schrödinger equation transform as

� → �� = fg„g
−1�x,t�…�„g−1�x,t�… , �33�

where the companion function fg is known explicitly �43�.
The generators of the Schrödinger group, which can be con-
sidered as infinitesimal version of these transformations,
form a Lie-Algebra.

In �25� generators of space-time transformations have
been constructed which act as dynamical symmetries on a
more general deterministic equation, namely on

�− ��t +
1

z2�r
z�� = 0. �34�

where z�0 is a real number. It is easy to see that Eq. �34� is
equivalent to �1� for z=2 resp. to �2� for z=4 when setting
�2= �4��−1 resp. �4=−�16��−1. The generators of the corre-
sponding Lie algebra are explicitly given by �for d=1� �25�

X−1 = − �t, �35�

Y−� = − �r, �36�

X0 = − t�t −
1

z
r�r −

x

z
, �37�

X1 = − t2�t −
2

z
tr�r −

2x

z
t − �r2�r

2−z − 2�1�2 − z�r�r
1−z

− �1�2 − z��1 − z��r
−z, �38�

Y−1/z+1 = − t�r − �zr�r
2−z − �1z�2 − z��r

1−z. �39�

Operators like �r
1−z are so-called fractional derivatives, which

we recall in Appendix B. Hereby the quantities x and �1 are
related by

x =
z − 1

2
+

�1

�
�2 − z� . �40�

As shown in �25� these space-time symmetries �35�–�39�
can be used to fix the form of the two-time response function
completely. Using all generators and writing r=x−y, one
obtains

R0�r,t,s� = �t − s�−2x/z�� �r�
�t − s�1/z� , �41�

where the index 0 indicates that this is the result for the
noise-free theory. The scaling function ��u� satisfies the
fractional differential equation �25�

��u + z�u�u
2−z + 2z�2 − z��1�u

1−z���u� = 0. �42�

We have to stress that the scaling function given in �25� is
not the most general solution of this equation. In Appendix C
we derive this most general solution for any rational z. As
shown in the next section it is this solution which permits us
to derive the exact expressions for the space-time response
and correlation functions in the MH case by exploiting ex-
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clusively the space-time symmetries of the deterministic
equation �2�. For z=2 we recover the known result �25�

��u� = �0 exp�− �u2� , �43�

where the numerical factor �0 is not fixed by the theory. For
the case z=4 and d=1 our new result is �see Appendix C for
the expression obtained in two space dimensions�

��u� = c̃0�−
�

16
u4�1/4

0F2�3

4
,
5

4
,−

�

16
u4� + c̃1�−

�

16
u4�1/2

�0F2�5

4
,
3

2
,−

�

16
u4� + c̃2 0F2�1

2
,
3

4
,−

�

16
u4� �44�

with some constants c̃0, c̃1, and c̃2. Here we have used the
fact that x= d

2 in a free field theory as is easily obtained from
a dimensional analysis �see also the next section�. The coef-
ficients c̃0, c̃1, and c̃2 have to be arranged in such a way that
��u� vanishes for u→	. Analyzing the leading terms �46,47�
one realizes that the condition

��5

4
���3

4
�c̃0 + ��5

4
���3

2
�c̃1 + ��3

4
���1

2
�c̃2 = 0

�45�

provides exactly this, as it cancels all exponentially growing
terms.

Let us close this section by noting that in the derivation of
expression �41� we exploited the fact that the exact responses
of both the EW and MH case are time translation invariant.
Often when discussing out-of-equilibrium systems this is not
the case and one has to consider the subalgebra where the
generator X−1, responsible for time translation invariance, is
omitted �23–25,27,28�. This then yields for the autoresponse
the expression

R0�t,s� = r0s−1−a� t

s
�1+a�−�R/z� t

s
− 1�−1−a�

,

where the parameters a and a� have to be determined by
comparing with known results. When setting a=a�=�R /z
−1, one recovers our result.

V. DETERMINATION OF RESPONSE AND CORRELATION
FUNCTIONS FROM SPACE-TIME SYMMETRIES

In order to use the symmetry considerations of the last
section, we have to adopt the standard field theoretical setup
for the description of Langevin equations �23,49,50�. Apart
from the field h�x , t� we consider the so-called response field

h̃�x , t� which leads to the action

S�h, h̃� =
 du dR�h̃„�u + �2l�− �2�l
…h�

+
1

2

 du dR du� dR�h̃�R,u�

����R,u���R�,u���h̃�R�,u�� , �46�

where l=1 for the EW case and l=2 for the MH case. The

temporal integration is from 0 to 	 whereas the spatial inte-
gration is over the whole space. The following reduction to
the noise-free theory is a well-known procedure �23� but we
recall the most important steps in order to establish nota-
tions.

Varying the action yields the equation of motion for the

fields h and h̃

�h�x,t�
�t

= − �2l�− �2�lh�x,t� −
 dudRh̃�R,u�

����R,u���x,t�� , �47�

�h̃�x,t�
�t

= �2l�− �2�lh̃�x,t� . �48�

As expected, one recovers for the height h�x , t� Eqs. �1� and

�2� by identifying the noise with the term −�du dRh̃�R ,u�
����R ,u���x , t��.

One can now proceed by looking at the multipoint func-
tions which are defined in the usual way via functional inte-
grals:

��
i=1

n

h�xi,ti� �
j=n+1

m

h̃�x j,tj��
ª
 D�h�D�h̃��

i=1

n

h�xi,ti� �
j=n+1

m

h̃�x j,tj�exp�− S�h, h̃�� .

�49�

Within this formalism the space-time response �8� is given
by

R�x,y,t,s� = �h�x,t�h̃�y,s�� . �50�

In order to proceed one splits up the action in the same
way as done in �23�, that is as

S�h, h̃� = S0�h, h̃� + Sth�h, h̃� �51�

with the deterministic part

S0�h, h̃� =
 du dR�h̃�R,u���u + �2l�− �2�l�h�R,u��

�52�

and the noise part

Sth�h, h̃� =
1

2

 du dR du� dR�h̃�R,u�

����R,u���R�,u���h̃�R�,u�� . �53�

We call the theory exclusively described by S0 noise-free and
denote averages with respect to this theory with �¯�0. The
n-point functions of the full theory can then be written as
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��
i=1

n

h�xi,ti� �
j=n+1

m

h̃�x j,tj�� =��
i=1

n

h�xi,ti� �
j=n+1

m

h̃�x j,tj�exp�− Sth�h, h̃���
0

. �54�

It is easy to see that the noise-free theory has a Gaussian structure both for the EW and the MH model. Introducing the

two-component field �= � h

h̃
� one can write the exponential exp�−S0�h , h̃�� as exp�−�du dr du� dr� �tA�� with

A =
1

2
� 0 ��u − u����r − r����− �2�l − �u�

��u − u����r − r����− �2�l + �u� 0
� . �55�

From this one deduces two important facts which we will
need in the sequel. First, one has

�56�

unless n=m, which is due to the antidiagonal structure of A
�see for instance �7�, Chap. 4� For z=2, Eq. �56� coincides
with the Bargmann superselection rule �51�. Second, Wick’s
theorem holds. With this it follows that one can write the
four-point function as

�h�x,t�h�y,s�h̃�R,u�h̃�R,u���0

= �h�x,t�h̃�R,u��0�h�y,s�h̃�R�,u���0

+ �h�y,s�h̃�R,u��0�h�x,t�h̃�R�,u���0, �57�

where we have used Eq. �56�.
Now one can calculate the quantities of interest, namely

the space-time response and correlation functions. For this
one develops the exponential in �54� in a power series. One
remarks immediately that due to the selection rule �56� one
has

R�x,y,t,s� = R0�x,y,t,s� ª �h�x,t�h̃�y,s��0, �58�

i.e., the linear response function of the full theory is equal to
the noiseless linear response function. It follows that for any
realization of the noise one gets the same expression for the
response function, in agreement with the exact results de-
rived in Sec. III. It is also worth noting that within a free
field theory nonlinear responses vanish due to the same su-
perselection rule. Things are of course more tricky for a field
theory which is not free as here the noise can contribute to
the response. Whether this is the case depends on the con-
crete form of the interaction.

By expanding the exponential in �54� we obtain in a simi-
lar way that the space-time correlation function is given by
the expression

C�x,y,t,s� =
 du dR du� dR��h�x,t�h�y,s�h̃�R,u�

�h̃�R�,u���0���R,u���R�,u��� . �59�

Using Wick’s theorem we can replace the four-point function
by two-point functions �see Eq. �57�� and obtain

C�x,y,t,s� = 2
 du dR du� dR����R,u���R�,u���

��h�x,t�h̃�R,u��0�h�y,s�h̃�R�,u���0. �60�

Inspection of Eqs. �58� and �60� reveals that the only re-
maining undetermined quantity is the two-point function

�h�x , t�h̃�y ,s��0. However, as discussed in the previous sec-
tion, this two-point function is fully determined by the space-
time symmetries of the deterministic equation of motion. It
remains to show that the insertion of this two-point function
into Eqs. �58� and �60� indeed yields the exact expressions
for the space-time quantities both for the EW and MH cases.

A. z=2: The Edwards-Wilkinson case

This case with Gaussian white noise has already been
discussed in �23� in the context of phase ordering kinetics
and of critical dynamics. The response function can be read
off from Eq. �41� after inserting the scaling function �43�.
Recalling that for the EW case we have z=2, x= d

2 , and �2
= �4��−1 we readily obtain the exact result �16�. The only
quantity left free by the theory is the numerical prefactor �0.

The space-time correlation function is obtained by insert-
ing the same two-point function into Eq. �60�. This is most
easily seen by using the integral representation �15� of the
two-point function which yields after interchanging the order
of integration

C�x,y,t,s� = c0

0

t

dt�

0

s

dt�
 dk

�2
�deik·�x−y�e−�2k2�t−t��

�e−�2k2�s−t����̂�k,t���̂�− k,t��� �61�

which is exactly the same expression �up to the undeter-
mined constant c0� as �18�, and this for any choice of the
noise correlator ��̂�k , t���̂�−k , t���. It then immediately fol-
lows that we recover the exact results for C given in Sec.
III A.

B. z=4: The Mullins-Herring case

For the MH case we proceed along the same lines as for
the EW case. Let us start with the one-dimensional case d
=1. As already seen for the EW model, the response function
is just the response function of the noise-free theory whose
scaling function is given by �44� together with the condition

SYMMETRY-BASED DETERMINATION OF SPACE-TIME… PHYSICAL REVIEW E 74, 061604 �2006�

061604-7



�45� needed for a response which vanishes for u→	. In
order to proceed further we remark that in a powers series
expansion of �44� odd powers of the scaling variable u only
enter through the term with coefficient c̃0. However, odd
powers of the scaling variable are absent in the exact result
�26�, so we have to set c̃0=0. From Eq. �45� it then follows
that

��5

4
�c̃1 = − 2��3

4
�c̃2. �62�

Recalling that for the MH case z=4, x= d
2 , and �4

=−16���−1, it is now easy to check that the proposed scaling
function together with �62� indeed yields the exact result �26�
up to the normalization constant c̃2. This so determined two-
point function can then be inserted into the correlation func-
tion �60�, yielding the exact result �28�. This is again most
easily seen by using the integral representation

R�x − y,t,s� = r̂0
 dk

�2
�deik·�x−y�e−�4k4�t−s� �63�

of the response function �26�.
In two dimensions we have to replace the expression �44�

by �C16�. It follows that in d=2 the scaling function ob-
tained from LSI only contains two parameters which are fur-
thermore related through the condition �C17�. We are there-
fore left with a single undetermined parameter which only
appears as a numerical prefactor, similar to the EW case.
Inserting the resulting scaling function into the expressions
�58� and �60� readily yields the exact results for the space-
time quantities in two dimensions.

VI. MICROSCOPIC GROWTH MODELS
AND SPACE-TIME CORRELATIONS

Many theoretical studies of growth processes focus on
atomistic models where particles are deposited on a surface
and are then incorporated into the growing surface following
some specific rules which might include local diffusion pro-
cesses. Of special interest is the determination of the univer-
sality class to which these models belong. This is usually
achieved by computing some universal quantities through
numerical simulations and comparing them to the corre-
sponding quantities obtained from continuum growth equa-
tions like the EW and the MH equations discussed in this
paper. In a commonly used approach one focuses on the
estimation of the exponents z and �, which govern the be-
havior of the surface width �3�, through the best data col-
lapse.

In order to show that it is useful to look at two-time quan-
tities in nonequilibrium growth processes we discuss in the
following the space-time correlation function in the Family
model �33� and in a variant of this model �36�. Even so these
are very simple models, there is still some debate on the
universality class to which these models belong, especially in
2+1 dimensions. Whereas earlier numerical studies yielded
the value z=2 for the dynamical exponent in the
2+1-dimensional Family model �33–35,52�, in agreement
with the EW universality class with Gaussian white noise,

Pal et al. �36,37� in their study obtained a value z�1.65,
pointing to a different universality class. In addition they
studied a variant of this model �which we call restricted
Family model in the following� for which they recovered z
=2. These results of Pal et al. are surprising, especially so as
Vvedensky succeeded �53� in deriving in 1+1 dimensions
the EW equation with Gaussian white noise from both the
Family and the restricted Family model through a coarse-
graining procedure.

The Family model is a ballistic deposition model with
surface diffusion where a particle is dropped at a randomly
chosen surface site. Instead of fixing itself at this site, the
particle first explores the local environment �usually one re-
stricts this exploration to the nearest neighbors� and fixes
itself at the lattice site with the lowest height. When two or
more lattice sites other than the originally selected site have
the same lowest height, one of these sites is selected ran-
domly. In case the originally chosen lattice site is among the
sites with the lowest height, the particle remains at this site.
In the restricted version of this model, introduced in �36�, the
particle only moves to a site of lowest height when it is
unique. This change has the effect that the moving of the
particle only contributes deterministically to the surface
shape.

We have simulated these two models both in 1+1 and 2
+1 dimensions. For the 1+1-dimensional models all previ-
ous studies agree that z=2 and that both models belong to
the one-dimensional EW universality class with Gaussian
white noise. Our main interest here is the height-height
space-time correlation function C�x−y , t ,s�. From the exact
results presented in the first part of the paper we conclude
that this two-time quantity should only depend on the two
scaling variables t /s and r2 /s where r= �x−y�. In Fig. 1 we
test this expected scaling behavior in the 1+1-dimensional
Family model. In Fig. 1�a� we fix t /s and plot the correlation
function as a function of r2 /s, whereas in Fig. 1�b� r2 /s is

FIG. 1. �Color online� Dynamical scaling of the space-time cor-
relation function C�r2 /s , t /s� for the Family model in 1+1 dimen-
sions with different values of the waiting time s: �a� C vs r2 /s for
some fixed values of t /s, �b� C vs t /s for some fixed values of r2 /s.
The green curves are obtained from the exact result �19� derived
from the continuum EW equations with uncorrelated Gaussian
white noise. Numerical error bars are smaller than the sizes of the
symbols.
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fixed and C is plotted vs t /s. Lattices with 12 800 sites have
been simulated and the data shown result from averaging
over 1000 runs with different random numbers. The curves
obtained for different values of the waiting time s collapse
on a common master curve when multiplying C with s−1/2. In
addition, these master curves nicely agree with the expres-
sion �19� obtained from the EW equation with uncorrelated
white noise, once the nonuniversal constants D and �2 have
been determined �56�. A similar good agreement is obtained
for the restricted Family model. We list our estimates for D
and �2 for both one-dimensional models in Table I. It follows
from this table that D and �2 slightly differ in both models.
In addition, D /�2 is slightly larger for the restricted model,
even so the error bars are overlapping.

It is worthwhile noting that the continuum description is
not expected to completely describe the lattice models for
small values of r2 /s, as here the discrete nature of the lattice
cannot be neglected any more. Deviations are indeed ob-
served in Fig. 1�b� for r2 /s=1 and small values of t /s. These
lattice effects are expected to get stronger when the dimen-
sionality of the system increases.

After having verified that the computed scaling functions
in both versions of the 1+1-dimensional Family model agree
with the solution of the EW continuum equation, let us now
proceed to the more controversial 2+1-dimensional case. In
Fig. 2 we display the space-time correlation computed for
the original Family model in 2+1 dimensions. Again, in the
left panel we fix t /s, whereas in the right panel r2 /s is kept
constant. The data shown here have been obtained for lattices
with 300�300 sites with 5000 runs for every waiting time.
We carefully checked that our nonequilibrium data are not

affected by finite-size effects. Furthermore, we ran different
simulations with different random number generators and
obtained the same results within error bars. We obtain as the
main result of these simulations that the scaling function of
the space-time correlation function is in excellent agreement
�once the values of the nonuniversal constants have been
determined, see Table I� with the exact result obtained from
solving the two-dimensional EW equation with uncorrelated
white noise. The only discrepancies observed for small r2 /s
and small t /s are qualitativly the same as for the 1+1 case
and are explained by the discrete nature of the lattice. Our
results are in accordance with the results of �33–35,52,53�
but strongly disagree with those of Pal et al. �36,37�. Indeed,
a noninteger value of z in a continuum description cannot be
realized in a linear stochastic differential equation and leads
to completely different scaling functions as those obtained
from the EW equation.

In Fig. 3 �see also Table I� we show our results for the
restricted family model in 2+1 dimensions. Again, dynami-
cal scaling is observed, and again the data are well described
by the EW scaling functions in the scaling limit. However,
the determined values of the nonuniversal quantities D and
�2 are markedly different from the values obtained for the
original model. Specifically, the ratio D /�2 �which is of the
dimension kBT� is much larger for the restricted model. Iden-
tifying D /�2 with a �nonequilibrium� temperature, we can
view the processes in the restricted model to take place at a
higher temperature than in the original model. This is in
agreement with the observation from Pal et al. �37� that the
surface is locally rougher in the restricted model, as evi-
denced by the larger value of the interface width. In addition,
the change in the diffusion rule leads to a nonmonotonous
behavior of the correlation function for small r2 /s, as shown
in the inset of Fig. 3�a� for s=25 and t /s=1.04. Plotting the
correlation function in both the �10� and �11� directions, we
see that correlations between nearest neighbors are sup-
pressed, whereas the autocorrelation, i.e., the correlation with

TABLE I. Estimates for the nonuniversal constants D and �2.

D �2

d=1 8.85�4� 1.260�6�
d=1 restricted 9.25�5� 1.312�7�
d=2 83�2� 1.49�5�
d=2 restricted 271�5� 2.63�6�

FIG. 2. �Color online� The same as in Fig. 1, but now for the
Family model in 2+1 dimensions. Numerical error bars are compa-
rable to the sizes of the symbols.

FIG. 3. �Color online� The same as in Fig. 2, but now for the
restricted Family model in 2+1 dimensions. The inset in �a� shows
the correlation function in the �10� and �11� directions for the case
s=25 and t /s=1.04. The change of the diffusion rule has a strong
impact on the autocorrelation with r=0 and on the nearest-neighbor
correlations. Numerical error bars are comparable to the sizes of the
symbols.
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r=0, is strongly enhanced. This behavior can be understood
by recalling that in the restricted model a particle only dif-
fuses to a lower nearest-neighbor site when this site is
unique, but otherwise remains on the original site. If we in-
crease s and r, this effect weakens, and it completely van-
ishes in the scaling limit of large waiting times and large
values of r2 /s.

From our observation that the numerically computed
space-time correlation functions of both microscropic mod-
els coincide in the scaling limit with the exact expression
from the EW model we conclude that both the Family model
and the restricted Family model belong to the EW universal-
ity class with uncorrelated noise, and this not only in 1+1
dimensions but also in 2+1 dimensions.

VII. CONCLUSIONS

The aim of the present paper is twofold: on the one hand
we discuss the usefulness of universal scaling functions of
space-time quantities in characterizing the universality class
of nonequilibrium growth models, on the other hand we
demonstrate how a general symmetry principle allows to de-
rive scaling functions of two-point quantities for equilibrium
and nonequilibrium processes described by linear stochastic
Langevin equations.

In the context of nonequilibrium growth processes it is
rather uncommon to study universal scaling functions of
two-point quantities in the dynamical scaling limit in order to
determine the universality class to which a given micro-
scopic model belongs. We have illustrated the usefulness of
this approach by comparing the numerically obtained space-
time correlation functions for two atomistic growth models
with the exact expressions obtained from the corresponding
continuum stochastic Langevin equation. This approach has
allowed us to show that both models belong to the same
universality class, thus correcting conclusions obtained in
earlier numerical studies.

The study of universal scaling functions of space-time
quantities should also be of value in more complex growth
processes which are no more described by linear stochastic
differential equations. Examples include ballistic deposition
with an oblique incident particle beam �13� or growth pro-
cesses of the Kardar-Parisi-Zhang �KPZ� �54� and related
�55� universality classes where nonlinear effects can no more
be neglected. In addition, the scaling functions studied here
can also be measured in experiments involving nonequilib-
rium or equilibrium interface fluctuations. A promising sys-
tem is given by equilibrium step fluctuations �10–12,19�, as
these are again described by linear Langevin equations.

In addition we have shown that in nonequilibrium growth
processes scaling functions of out-of-equilibrium quantities
can be derived in a model independent way by exploiting the
generalized space-time symmetries of the noiseless part of
the stochastic equations of motion. We have demonstrated
explicitly how to proceed in the case of a rational dynamical
exponent z, following the general ideas formulated by Hen-
kel a few years ago �25�. In the context of nonequilibrium
growth processes, the cases z=2 �EW model� and z=4 �MH
model� are of special interest. The case z=2 has already been

studied extensively in the past. For the case z=4, however,
we present, to our knowledge, for the first time, the deriva-
tion of nonequilibrium scaling functions by exploiting the
mentioned symmetry principles. As these scaling functions
are found to agree with the exact expressions derived from
the MH equation, we conclude that the postulated space-time
symmetries and the proposed way for constructing the scal-
ing functions can also be valid for other cases than merely
the case z=2.

Let us end this paper by a general remark on the applica-
bility of the concept of local scale transformations in the
context of other out-of-equilibrium processes. The data pre-
sented in this paper for the microscopic growth models
nicely show the limitations of the continuum equations in
describing atomistic models. Whereas in the limit of large
times and large spatial separations the numerically computed
correlation functions completely agree with the exact results
from the continuum equation, notable deviations are ob-
served for small times and small spatial separations. These
deviations reflect the microscopic details of the models �un-
derlying lattice structure, diffusion rules, etc.� which are not
captured by the continuum model. This sheds an interesting
light on an ongoing discussion �48,57–59� on the applicabil-
ity of the theory of local scale invariance, which, we recall,
permits to derive expressions for scaling functions starting
from the noiseless part of the continuum equations of mo-
tion. Clearly, it has to be expected that the so-derived scaling
functions cannot fully describe microscopic models in the
short time and short distance limit. As it is exactly this limit
which is in the center of the mentioned discussion involving
the theory of local scale invariance, it seems advisable to
take any observed deviations in this limit between numerical
data, obtained from simulations of microscopic models, and
the theoretically derived scaling functions cum grano salis,
as these deviations might only reflect the microscopic nature
of the models.
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APPENDIX A: EXACT RESULTS FOR THE MULLINS-
HERRING CASE IN d=2

We here compile the exact results in two space dimen-
sions for the dynamical two-time quantities for the Mullins-
Herring case with z=4. The space-time response can again
be expressed through generalized hypergeometric functions
and reads

R�x − y,t,s� =
1

8
�4
1/2�
1/2

0F2�1

2
,1,

1

256�4
� �x − y�

�t − s�1/4�4�
−

1

4�4
1/2� �x − y�

�t − s�1/4�2

�0F2�1,
3

2
,

1

256�4
� �x − y�

�t − s�1/4�4�� . �A1�

For the autoresponse one gets
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R�t,s� =
1

8
1/2�4
1/2 �t − s�−1/2. �A2�

As already noted before, these expressions give the response
of the system to the noise itself and therefore do not depend

on the concrete realization of the noise as long as it is non-
conserving.

For the space-time correlation function C�x−y , t ,s� and
for the autocorrelation function C�t ,s� we obtain the follow-
ing expressions, which depend on the form of the noise.

Gaussian white noise �MH1�:

C�x − y,t,s� =
D

32
2�� �
n=0,n�1

	 �− 1�n�x − y�2n��n + 1

2
�

�2n�!��1 + 2n����1

2
− n��2

�4
�n+1�/2�1 − n�

· ��t + s��1−n�/2 − �t − s��1−n�/2�� −
�x − y�2

4
�4
ln� t + s

t − s
�� ,

�A3�

C�t,s� =
D

32
5/2�4
1/2 ��t + s�1/2 − �t − s�1/2� . �A4�

Spatially correlated noise �MH2�:

C�x − y,t,s� = �
n=0

	

�− 1�nãn
�2�����x − y�2n��t + s�−�2n−2�−2�/4

− �t − s�−�2n−2�−2�/4� , �A5�

C�t,s� = ã0
�2������t + s��2+2��/4 − �t − s��2+2��/4� �A6�

with

ãn
�2���� =

22�−1D�����„�2 + 2n − 2��/4…
22n�n!�2�2� − 2n + 2���1 − ���4

�2+2n−2��/4 .

APPENDIX B: ON FRACTIONAL DERIVATIVES

We list here the most important properties of the frac-
tional derivates as these will be used in Appendix C in the
derivation of the scaling function of the space-time response.
We stress the point that there are several definitions of frac-
tional derivatives available, which are not equivalent. How-
ever, we need a special type of fractional derivative. We
simply quote the most important properties as given in �25�
and refer the reader to this reference for a more thorough
introduction.

�r
a acts on a function f�r� which can be expanded into the

form f�r�=�e�E
	 fer

e+�n=0
	 Fn��n��r�. Here E is the set E

=�N+� with ��0 and ��−���n+1�+m+1�, where n ,m
�N. ��n� is the nth derivate of the delta function. �r

a is then
defined by

�i� �r
a
„f�r� + �g�r�… = �r

af�r� + ��r
ag�r� , �B1�

�ii� �are =
��e + 1�

��e − a + 1�
re−a + �

n=0

	

�a,e+n+1��e + 1���n��r� ,

�B2�

�iii� �r
a��n��r� =

r−1−n−a

��− a − n�
+ �

m=0

	

�a,m��n+m��r� . �B3�

Here  and � are real constants and g�r� is another function
which can be expanded in the same way as f�r�. The most
important properties of these fractional derivatives are

�r
a+bf�r� = �r

a�r
bf�r� = �r

b�r
af�r� , �B4�

��r
a,r�f�r� = ��rr − r�r�f�r� = a�r

a−1f�r� , �B5�

�r
af�r� = a�r

a f�r� , �B6�

�r
a f�r� = −a�r

af�r� . �B7�

APPENDIX C: DERIVATION OF THE SCALING
FUNCTION

In this appendix we outline the derivation of the scaling
function ��u� for any rational dynamical exponent z, thereby
correcting the incomplete result given in �25�. For notational
simplicity we do this in one space dimension. For z=2 and
z=4 we give the results in two space dimensions at the end
of this appendix.

Our starting point is Eq. �42�:

��u + âu�u
2−z + b̂�u

1−z���u� = 0 �C1�

with â=z� and b̂=2z�2−z��1. We write the rational dynami-
cal exponent as z=N+ p

q , where N is the largest integer equal
or smaller than z. We also assume â�0 and give the result
for â=0 at the end, as it can be derived in exactly the same
way. In a first step we rewrite �C1� as

��u
z + âu�u + b̂���u� = 0 �C2�
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with ��u�=�u
1−z��u�. In doing so we have used property

�B4� of the fractional derivative. It is in fact this step which
enables us to avoid the negative exponents for the fractional
derivatives in Eq. �C1�, which are responsible for the incom-
plete result in �25�. The solution ��u� of this equation yields
then the scaling function ��u� through the relation

��u� = �u
z−1��u� . �C3�

Before doing this, it is instructive to consider �C2� for the
case z=4. Indeed, Eq. �C2� is then a normal differential
equation of fourth order, so that the solution will be, a priori,
a linear combination of four linearly independent solutions
�i.e., it will contain four free parameters�. The method ap-
plied in �25�, however, only yields one of these linearly in-
dependent solutions.

We solve �C2� for u�0 under the additional assumption
that the desired solution is nonsingular for u→0. Further-
more, we require that the scaling function should drop to
zero for u→	. We then make the ansatz

��u� = �
n=0

	

cnun/q+s, c0 � 0 �C4�

and suppose s�−1 �60�. This ansatz is introduced into �C2�
and yields, because of c0�0, the recursion relation

cn+�

�„�n + q�/q + s + 1…

��n/q + s + 1�
+ cn„â�n/q + s� + b̂… = 0 �C5�

with �= p+qN as well as the relation

s =
p

q
+ m, m � E , �C6�

where the set E is given by

E ª �− 1,0, . . . ,N − 1, p � 0,

0, . . . ,N − 1, p = 0.
� �C7�

It then also follows that c1= . . . =cp+qN−1=0. With this we
obtain after some algebra

��u� = �
m�E

cm�
n=0

	

an
�m�unz+p/q+m �C8�

with

an
�m� =

�− âz�n�� p

q
+ 1 + m���n +

p/q + m

z
+

b̂/â

z
�

��nz +
p

q
+ m + 1��� p/q + m

z
+

b̂/â

z
� .

�C9�

The cm are free parameters not fixed by the theory. Finally,
the scaling function ��u� is obtained from Eq. �C3�:

��u� = �
m�E

cm��m��u� �C10�

with

��m��u� = �
n=0

	

bn
�m�u�n−1�z+p/q+m+1 �C11�

where the coefficients bn
�m� are given by

bn
�m� =

�− âz�n�� p

q
+ 1 + m���n +

p/q + m

z
+

b̂/â

z
�

���n − 1�z +
p

q
+ m + 2��� p/q + m

z
+

b̂/â

z
� .

�C12�

We remark that our final result �C10� is indeed regular for
u→0, as b0

�m�=0 for m=−1, . . . ,N−2. This is readily seen by
recalling that ��l�=	 for l�−N0. As already mentioned in
�25�, the radius of convergence is infinite for z�1.

We also note that the number of free parameters is a pri-
ori equal to N if z�N and N+1 else. However, there might
be cases where some of the independent solutions ��m��u�
vanish.

For completeness let us also quote the result for â=0. In
this case

bn
�m� = �− b̂�n

�� p

q
+ 1 + m���nz +

p

q
+ m + 1�

�„�n + 1�z + 1…���n − 1�z +
p

q
+ m + 2� .

�C13�

The expressions �43� and �44� for ��u� can be obtaind
from �C10� by setting z=2 �i.e., p=0 and N=2� or z=4 �i.e.,
p=0 and N=4�, respectively. For the EW case it is important
to note that ��0��u� vanishes as bn

�0�=0 for every n which

immediately follows from the fact that b̂=2z�2−z��1=0 for
z=2. The remaining solution ��1��u� is then just the exponen-
tial function

��1��u� = exp�− �u2� . �C14�

For the MH case it is the solution ��2� which vanishes in the

free-field case. Indeed, from Eq. �40� we obtain b̂
4â =− 1

2 by
recalling that x= 1

2 . It then follows that the Gamma-function

�� p/q+m
z + b̂/â

z
� always diverges in the denominator of Eq.

�C12�, yielding ��2��u�=0 for every u. We are therefore left
with three independent solutions, and after relabelling we
obtain the final expression �44�:

��u� = c̃0�−
�

16
u4�1/4

0F2�3

4
,
5

4
,−

�

16
u4� + c̃1�−

�

16
u4�1/2

�0F2�5

4
,
3

2
,−

�

16
u4� + c̃2 0F2�1

2
,
3

4
,−

�

16
u4� . �C15�
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Let us add that the asymptotic behavior of the generalized
hypergeometric functions 0F2 is well known �46,47�. Recall-
ing that the scaling function should vanish for u→	, we can
exploit this known asymptotic behavior in order to derive
relations between the parameters cm. For the case z=4 this
then yields the condition �45� given in Sec. IV.

Let us finish this appendix by quoting the resulting scal-
ing functions ��u� in two space dimensions. For the EW case
with z=2 we get the same expression �C14� as for the one-
dimensional case. For the MH case with z=4, our calcula-
tions yield the expression

��u� = c̃1�−
�

16
u4�1/2

0F2�3

2
,
3

2
,−

�

16
u4�

+ c̃2 0F2�1

2
,1,−

�

16
u4� �C16�

with the additional condition

c̃1 = −
4



c̃2. �C17�
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